On the Wiener Polarity Index of Lattice Networks
نویسندگان
چکیده
Network structures are everywhere, including but not limited to applications in biological, physical and social sciences, information technology, and optimization. Network robustness is of crucial importance in all such applications. Research on this topic relies on finding a suitable measure and use this measure to quantify network robustness. A number of distance-based graph invariants, also known as topological indices, have recently been incorporated as descriptors of complex networks. Among them the Wiener type indices are the most well known and commonly used such descriptors. As one of the fundamental variants of the original Wiener index, the Wiener polarity index has been introduced for a long time and known to be related to the cluster coefficient of networks. In this paper, we consider the value of the Wiener polarity index of lattice networks, a common network structure known for its simplicity and symmetric structure. We first present a simple general formula for computing the Wiener polarity index of any graph. Using this formula, together with the symmetric and recursive topology of lattice networks, we provide explicit formulas of the Wiener polarity index of the square lattices, the hexagonal lattices, the triangular lattices, and the 33 ⋅ 42 lattices. We also comment on potential future research topics.
منابع مشابه
Wiener Polarity Index of Tensor Product of Graphs
Mathematical chemistry is a branch of theoretical chemistry for discussion and prediction of the molecular structure using mathematical methods without necessarily referring to quantum mechanics. In theoretical chemistry, distance-based molecular structure descriptors are used for modeling physical, pharmacologic, biological and other properties of chemical compounds. The Wiener Polarity index ...
متن کاملThe Generalized Wiener Polarity Index of some Graph Operations
Let G be a simple connected graph. The generalized polarity Wiener index of G is defined as the number of unordered pairs of vertices of G whose distance is k. Some formulas are obtained for computing the generalized polarity Wiener index of the Cartesian product and the tensor product of graphs in this article.
متن کاملOn Wiener polarity index of bicyclic networks
Complex networks are ubiquitous in biological, physical and social sciences. Network robustness research aims at finding a measure to quantify network robustness. A number of Wiener type indices have recently been incorporated as distance-based descriptors of complex networks. Wiener type indices are known to depend both on the network's number of nodes and topology. The Wiener polarity index i...
متن کاملOn the Wiener Polarity Index∗
The Wiener polarity indexWP (G) of a graph G is the number of unordered pairs of vertices {u, v} of G such that the distance of u and v is equal to 3. In this paper, we obtain the relation between Wiener polarity index and Zegreb indices, and the relation between Wiener polarity index and Wiener index (resp. hyper-Wiener index). Moreover, we determine the second smallest Wiener polarity index t...
متن کاملWiener Way to Dimensionality
This note introduces a new general conjecture correlating the dimensionality dT of an infinite lattice with N nodes to the asymptotic value of its Wiener Index W(N). In the limit of large N the general asymptotic behavior W(N)≈Ns is proposed, where the exponent s and dT are related by the conjectured formula s=2+1/dT allowing a new definition of dimensionality dW=(s-2)-1. Being related to the t...
متن کامل